Electronic Excitation Transfer from Carotenoid to Bacteriochlorophyll in the Purple Bacterium <italic>Rhodopseudomonas acidophila</italic>
نویسندگان
چکیده
Ultrafast fluorescence upconversion has been used to probe electronic excitation transfer within the B800B820 light-harvesting antenna of Rhodopseudomonas acidophila strain 7050. Emission from the carotenoid S2 band decays in 54 ( 8 fs, and the bacteriochlorophyll B820 Qy band rises in approximately 110 fs. The B820 Qy rise time is wavelength-dependent. Energy-transfer rates between the carotenoid and several neighboring bacteriochlorophyll are calculated. Coupling strengths are estimated through transition dipoletransition dipole, polarization, and higher-order Coulombic coupling along with a new transition density volume coupling calculation. Data are compared to calculated energy-transfer rates through the use of a four-state model representing direct carotenoid to B820 energy transfer. The carotenoid emission data bound the S2 to Qx transfer time between 65 and 130 fs. The S1 to Qy transfer is assumed to be mediated by polarization and Coulombic coupling rather than by exchange; the transfer time is estimated to be in the picosecond regime, consistent with fluorescence quantum yield data.
منابع مشابه
Femtosecond dynamics of the forbidden carotenoid S1 state in light-harvesting complexes of purple bacteria observed after two-photon excitation.
Time-resolved excited-state absorption intensities after direct two-photon excitation of the carotenoid S(1) state are reported for light-harvesting complexes of purple bacteria. Direct excitation of the carotenoid S(1) state enables the measurement of subsequent dynamics on a fs time scale without interference from higher excited states, such as the optically allowed S(2) state or the recently...
متن کاملSpectroscopy of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila: diagonal disorder, intercomplex heterogeneity, spectral diffusion, and energy transfer in the B800 band.
This paper reports a detailed spectroscopic study of the B800 absorption band of individual light-harvesting 2 (LH2) complexes of the photosynthetic purple bacterium Rhodopseudomonas acidophila at 1. 2 K. By applying single-molecule detection techniques to this system, details and properties can be revealed that remain obscured in conventional ensemble experiments. For instance, from fluorescen...
متن کاملAb Initio Molecular Orbital Calculations of Electronic Couplings in the LH2 Bacterial Light-Harvesting Complex of Rps. Acidophila
The results of ab initio molecular orbital calculations of excited states and electronic couplings (for energy transfer) between the B800 and B850 bacteriochlorophyll a (Bchl) chromophores in the peripheral lightharvesting complex (LH2) of the purple photosynthetic bacterium Rhodopseudomonas acidophila are reported. Electronic couplings are estimated from “supermolecule” calculations of Bchl di...
متن کاملExcitation Energy Trapping and Dissipation by Ni-Substituted Bacteriochlorophyll <italic>a</italic> in Reconstituted LH1 Complexes from <named-content content-type="genus-species" type="simple">Rhodospirillum rubrum</named-content>
Bacteriochlorophyll a with Ni replacing the central Mg ion was used as an ultrafast excitation energy dissipation center in reconstituted bacterial LH1 complexes. B870, a carotenoid-less LH1 complex, and B880, an LH1 complex containing spheroidene, were obtained via reconstitution from the subunits isolated from chromatophores of Rhodospirillum rubrum. Ni-substituted bacteriochlorophyll a added...
متن کاملThe crystallographic structure of the B800-820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila strain 7050.
The B800-820, or LH3, complex is a spectroscopic variant of the B800-850 LH2 peripheral light-harvesting complex. LH3 is synthesized by some species and strains of purple bacteria when growing under what are generally classed as "stressed" conditions, such as low intensity illumination and/or low temperature (<30 degrees C). The apoproteins in these complexes modify the absorption properties of...
متن کامل